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Abstract
Monoscopic panorama provides the display of omnidirectional contents surrounding the viewer. An increasingly popular way to
reconstruct a panorama is to stitch a collection of fisheye images. However, such non-planar views may result in problems such
as distortions and boundary irregularities. In most cases, the computational expense for stitching non-planar images is also
too high to satisfy real-time applications. In this paper, a novel monoscopic panorama reconstruction pipeline that produces
better quad-fisheye image stitching results for omnidirectional environment viewing is proposed. The main idea is to apply
mesh deformation for image alignment. To optimize inter-lens parallaxes, unwarped images are firstly cropped and reshuffled to
facilitate the circular environment scene composition by the seamless ring-connection of the panorama borders. Several mesh
constraints are then adopted to ensure a high alignment accuracy. After alignment, the boundary of the result is rectified to be
rectangular to prevent gapping artefacts. We further extend our approach to video stitching. The temporal smoothness model is
added to prevent unexpected artefacts in the panoramic videos. To support interactive applications, our stitching algorithm is
programmed using CUDA. The camera motion and average gradient per video frame are further calculated to accelerate for
synchronous real-life panoramic scene reconstruction and visualization. Experimental results demonstrate that our method has
advantages in respects of alignment accuracy, adaptability and image quality of the stitching result.
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1. Introduction

The monoscopic panorama is a centre-of-projection image and
normally presents as a single equirectangular panoramic photo
[TBLG16]. It is typically a cost-effective choice for the omnidi-
rectional photography, by which people can view monoscopic con-
tents on any device. A panoramic image can be used to display the
surrounding environment directly and efficiently [dSJ19]. The tra-
ditional way that cumbersomely reconstructs all 3D models in the
space greatly limits the complexity and lacks of adaptability in com-
puter graphics applications. Besides, the monoscopic panorama can
be used as the input for other tasks, e.g. omnidirectional depth esti-
mation [ZKZD18], image-based rendering [EKD*17], 6 degree-of-
freedom (DoF) virtual reality (VR) [SKC*19], etc.

One promisingway to reconstruct a professional panoramic scene
is to use a quad-fisheye camera with four wide-angle lenses. It can
have a field-of-view (FOV) larger than 180◦ per lens (Figure 1)

and acquire images simultaneously for four orthogonal viewing di-
rections. These images have large-proportional overlapping areas
with each other [JKOK15] and together cover the full 360◦ view-
ing range of surroundings [LKK*16]. Compared to other more
professional (e.g. multi-camera arrays) or commercial (e.g. dual-
fisheye cameras) panorama cameras, the quad-fisheye camera offers
an optimal trade-off between hardware cost, image resolution and
FOV coverage. After fisheye images have been acquired, they are
stitched in a row with an appropriate order to form a panorama. The
stitched panoramic image can then be mapped onto a 3D spheri-
cal surface and the virtual scene is rendered at user’s viewing po-
sition in this way to form an omnidirectional display of the en-
vironment. It has to present a rectangular boundary [GRE*16] so
that the left and right borders can be seamlessly connected. This
guarantees that no obvious gaps are visible on the displayed sur-
rounding environment and ensures a good quality of the panoramic
view.
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Figure 1: Image acquisition using a quad-fisheye camera. Each
lens has a FOV of 190◦ and two adjacent lenses have an overlapping
FOV of 100◦.

Image stitching is crucial to the panoramic scene reconstruc-
tion. In recent years, related research has been carried out on per-
spective image stitching [Sze06]. However, not many efforts have
been conducted for non-planar image stitching. Perspective image
stitching methods based on feature point matching can be extended
to align fisheye images. Traditional image stitching methods aim
to minimize alignment errors, such as finding global parametric
warps to align images [YHL*16]. Global warp models work well
for ideal cases when the camera translation is negligible or the scene
is nearly planar [BL07]. However, for stitching images of view-
points of non-planar scenes, undesired artefacts may not be easily
disposed.

The spatially varying warp model has been proposed recently to
improve the stitching quality [GKB11]. Different spatially varying
warp models for image stitching can be classified into two cate-
gories, i.e. the alignment model using multiple local homographs
[LLM*11] and the mesh deformation model based on the global ho-
mograph [ZCT*14]. Although the former improves the alignment
accuracy, the non-overlapping image region is always incorrectly
stretched, andmultiple images with large parallax cannot be stitched
accurately [WRHS13]. The latter optimizes the image alignment
quality by adding constraint factors to prevent distortions in non-
overlapping regions [CSC14].

Hardware profiling of a quad-fisheye camera, e.g. lens aperture,
focus, assembly errors, etc., is known by the manufacturer or can
be calibrated. Image stitching algorithms applied in software pro-
grams offered by camera vendors are strictly dependent on these
measurements and are normally non-public. In our research, we
developed a camera-independent quad-fisheye image stitching ap-
proach, which is preferable for the universal application develop-
ment without binding to a limited selection of cameras and enclosed
commercial software programs. Camera-dependent image stitching
approaches are normally based on the rigid image alignment using
geometric transformation, while our approach makes use of the de-
formable registration mechanism based on correlating image char-
acteristics.

This paper proposes a novel monoscopic 360◦ scene reconstruc-
tion pipeline based on our camera-independent quad-fisheye image
stitching approach. Acquired fisheye images are firstly unwarped
to represent planar views. Then energy functions with constraint
factors are applied to the alignment based on deformable meshes
to bring homologous points of two images as close as possible.
The image stitching order is optimized to preserve a high quality
of the omnidirectional viewing. Undistorted images are cropped to
optimize inter-lens parallaxes and avoid inconsistent artefacts. To
extend our method for stitching videos, the temporal smoothness
constraint is used to improve the spatio-temporal smoothness of
the deformed mesh. To accelerate the computation, parameters of
meshes and textures are calculated on GPU using CUDA. For
synchronous panoramic viewing, resulting monoscopic videos are
mapped onto a uniform 3D spherical surface to describe omnidirec-
tional information of the scene. Experimental results demonstrate
that our approach has advantages of the high alignment accuracy,
robustness and adaptability, by efficiently delivering a high image
quality of the stitched panorama.

Main contributions of our work are outlined as follows:

• We develop a new mesh-based approach to stitch quad-fisheye
images. After inter-lens parallax optimization, several new or
revised mesh constraints are applied to eliminate distortions
and artefacts of the resulting panoramic image with a regular
boundary.

• We extend our fisheye image stitching method for the efficient
video stitching to create the synchronous panoramic viewing. Ac-
cumulative errors of shared video frames are bounded by calcu-
lating camera motion and average gradient per video frame.

• Our camera-independent approach supports interactive applica-
tions well. The entire pipeline of our approach can be imple-
mented on GPU using CUDA and achieve a high FPS for the
real-time panorama stitching and rendering.

2. Related Research

The monoscopic panorama is created by stitching multiple images
with the narrow FOV. Image stitching aims to build the correspon-
dence between multi-view images, while parallaxes and lens distor-
tions are overcome. A comprehensive survey of research for image
stitching is given by Szeliski [Sze06].

Global alignment models. Most traditional image stitching
methods make use of global warps, e.g. global affine and homog-
raphy transformation, to align images [Sze06]. Conventional meth-
ods based on global alignment models normally are feature-based.
Lin et al. [LLM*11] proposed the smoothly varying affine (SVA)
warp that maintains a global affinity for adaptive image stitching.
Due to the higher DoF, the homography model is more flexible
to align images from different perspectives [BL07]. Brown et al.
[BL07] proposed an automatic stitching method using a global ho-
mography. The global homography model works well for images
of planar views. In recent years, deep learning methods have shown
their potentials to stitch images with weak constraints. DeTone et al.
[DMR16] leveraged the deep convolutional neural network (CNN)
to estimate relative homography between a pair of images. Nie et al.
[NLL*20] presented the view-free image stitching network based
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on a global homography. Current networks can only be trained us-
ing a dataset of parallax-free and synthetic images. Existing data-
driven methods cannot provide desired stitching results for real-
world scenes.

Feature-based adaptive homography models. Decomposing
a single global warp model into multiple local warp models can
achieve a better alignment accuracy. Gao et al. [GKB11] proposed a
dual-homography warp to process scenes with two dominant planes
using a weighted sum of two homographies.

Some research focused on superpixel segmentation methods,
Chaurasia et al. [CDSHD13] performed local alignment warps on
each superpixel individually. Lee et al. [LS20] estimated multi-
ple homographies and found their inlier feature matches between
two images. Some other research focused on mesh-based methods.
Zaragoza et al. [ZCT*14] tackled the limited performance for ex-
trapolating the local affine model and proposed the as-projective-
as-possible (APAP) warp for the accurate local adaptation with a
good extrapolation. Inspired by the effectiveness of APAP, Chang
et al. [CSC14] proposed a shape-preserving half-projective (SPHP)
warp, which spatially combines a homography warp with a similar-
ity warp. Lin et al. [LPRA15] proposed an adaptive as-natural-as-
possible (AANAP) warp that uses a smooth stitching field derived
from the local homography or its linearized version and a global
similarity transformation. Chen et al. [CC16] proposed a global-
similarity-prior (GSP) warp and designed a scheme to automati-
cally select the proper global scale and rotation for each image to
be aligned. Lee et al. [LKK*16] also split a panorama into multi-
ple cells and designed a deformable spherical projection model to
minimize stitching artefacts caused by large parallax in the views.

Panoramic image generation. In recent years, imaging applica-
tions have been pursuing the one-time acquisition of a panoramic
scene. A single camera integrated with multiple wide-angle lenses
or camera arrays can satisfy this demand. Ho et al. [HSRB17] made
use of a dual-fisheye image stitching method based on rigid mov-
ing least squares. Huang et al. [HCR*17] enhanced the standard
structure-from-motion (SfM) method to work with dual-fisheye
360◦ videos. Perazzi et al. [PSZ*15] used unstructured camera ar-
rays to generate panoramic videos. They computed pairwise warps
for robust video stitching with minimal parallax artefacts. Lai et al.
[LGG*19] proposed a novel pushbroom stitching network to gener-
ate video panoramas. However, thesemethods suffer from undesired
distortions when more images are stitched.

As the stitching result, a panoramic image should have a rectan-
gular boundary so that the 3D panoramic scene can be reconstructed
directly by circular connecting and spherical mapping [MCE*17].
Otherwise, gapping artefacts can be introduced and destroy the vi-
sual consistency. He et al. [HCS13] proposed a content-aware warp-
ing method to fix panoramas with irregular boundaries. Although
their method works well for images of planar views, their two-
step warping strategy is based on line detection and not suitable
for stitching non-planar images. Zhang et al. [ZLZ20] proposed
a content-preserving image stitching method that setups piece-
wise rectangular boundary constraints to restore the naturalness of
stitched image contents. Won et al. [WRL20] presented large-scale
panorama datasets of omnidirectional multi-view images for train-
ing and testing data-driven methods. Fisheye images can leverage

Figure 2: Fisheye image unwarping. Left: a position P in the fisheye
image; middle: P is mapped to S on the 3D unit sphere; right: S is
projected to the 2D orthogonal coordinate system O.

data-driven methods to generate panoramic images with rectangu-
lar boundaries.

3. Quad-fisheye Image Stitching

The pipeline of our quad-fisheye image stitching method is elabo-
rated in this section. The input is a set of four fisheye images cap-
tured simultaneously using a quad-fisheye camera. Each fisheye im-
age is fitted with a deformable mesh and divided into small patches
by grid cells. These fisheye images are aligned by deforming fitting
meshes and stretching the image correspondingly with constraints
defined as energy functions. The output of the stitching process is a
rectangular panoramic image that correctly stitches all four fisheye
images together with minimum distortions.

3.1. Fisheye image unwarping

According to the optical principle of quad-fisheye camera lenses,
the acquired fisheye image initially represents a non-planar view
with tremendous distortions in its periphery [HSRB17]. It is highly
necessary to unwarp the fisheye image before stitching to eliminate
distortions. The centre of the circular content area in the fisheye
image should be identified first. It normally coincideswith the image
focus position. The minimum circumscribed circle is computed to
extract the circular content area and the circle centre is taken as the
focus position. This circular area is then bounded by a fitting square
to crop the original fisheye image.

To unwarp the cropped fisheye image of an edge length L, each
image point P(x, y) is firstly mapped onto a 3D unit sphere as spher-
ical coordinates S(θ, ϕ, 1) (Figure 2). In practice, due to the design
or manufacturing deviation, the centerline of the fisheye camera lens
inevitably has a pitch angle ρ �= 0 to the camera horizontal plane.
The unwarping may suffer from ignoring this pitch angle ρ and re-
sult in serious distortions along the image horizontal middle line
[RPZSH13]. ρ can be calibrated [Zha00] or learned from the manu-
facturer, and cartesian coordinates S′(x′, y′, z′) of S(θ, ϕ, 1) are cal-
culated as the following:

x′ = sin θ · sinϕ

y′ = (cos θ · sinϕ · cos ρ ) − (cosϕ · sin ρ )

z′ = (cos θ · sinϕ · sin ρ ) + (cosϕ · cos ρ )

(1)
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Figure 3: Inter-lens parallax optimization between adjacent cam-
era lenses {C1,C2,C3}. Green and red areas represent blind regions
of camera lenses.

Then point S′ is projected to a 2D orthogonal coordinate system
using spherical projection as O(u, v):

u = L

(
1

γ
tan−1

(√
(x′)2 + (z′)2/y′

))
cosβ

v = L

(
1

γ
tan−1

(√
(x′)2 + (z′)2/y′

))
sinβ

(2)

where γ indicates the FOV of each camera lens and β =
tan−1(z′/x′). Instead of rectifying distortions after stitching by a 2D
correction transformation [HZ04], our approach unwarps input fish-
eye images using the spherical projection in advance. This also guar-
antees that the panorama suits for the 360◦ viewing when it is ren-
dered on a spherical surface. Before practical application, we just
need one calibration to obtain parameters of fisheye image unwarp-
ing for a given camera. These precomputed parameters can then be
reused from a lookup table (LUT) for each image stitching.

3.2. Inter-lens parallax optimization

The image stitching approach aims to convert views with inter-lens
parallaxes into a consistent stitching result. The object closer to the
camera makes a larger parallax between adjacent images. Note that
an object that is too close to the camera might be observed by only
one lens [SBSH18]. The feature correspondence between matched
images cannot be correctly built in such a case. This fact can lead to
serious artefacts in the stitched image. As shown in Figure 3a, the
minimum parallax-tolerant depth d is defined as:

d = ‖O1O2‖ = r

tanφ
− r (3)

where r is the camera rig radius and φ = (γ − π )/2. γ indicates
the FOV of each camera lens. d1 = ‖OF − r‖ is the minimum vis-
ible depth of the camera. In other words, if the distance between
an object and the camera is less than d1 (i.e. in the red region), all
lenses cannot observe this object. Parallaxes will be a minor issue
if the camera is used to capture environments with far away ob-
jects [LS20]. Therefore, inter-lens parallaxes can be optimized by
increasing d. We crop each unwarped image to convert the horizon-
tal FOV from γ to π (i.e. φ = 0 and d = +∞), as shown in Fig-
ure 3b. Although the new minimum visible depth d2 = ‖OF1 − r‖

Figure 4: Reshuffle quad-fisheye images: the first image A is split
into two equal sub-imagesA′

1 andA
′
2, which are stitchedwith fisheye

image B, C and D sequentially. The dash box represents cropped
regions according to the minimum parallax-tolerant depth.

is slightly larger than d1, artefacts in the stitched image can be effec-
tively reduced. Intuitive experiments are discussed in Section 5.2.
In our method, as long as the distance between the object and the
camera is greater than d2, adjacent images can be stitched more ac-
curately.

As in a looped sequence of fisheye images, the left part of the first
image overlaps with the right part of the last image. To reconstruct
the panoramic view, the left part of the panorama is connected to its
right part. A simple and direct way is to crop or merge duplicated
areas in the stitching result. However, important contents are very
likely to be cut off by mistake and gaps are possibly introduced.
Ghosting artefacts are also easily generated by the merging in such
a way.

In our approach, input quad-fisheye images are reshuffled before
stitching. The first source image is split into two equal sub-images,
which are then stitched, respectively, with the remaining three im-
ages as shown in Figure 4. This facilitates connecting the left and
right sides of the resulting image to form a circular panorama and
ensures its display without distortions and gaps.

3.3. Alignment based on matching points

Our fisheye image stitching approach makes use of deformable
meshes fitted to source images. The estimation of howfittingmeshes
are deformed for the image alignment is based on correspondences
between matching points, which are pairs of associated image fea-
ture points. Each of two paired matching points is identified on ei-
ther of the two source images to be aligned.

Let Ii and Ij denote two adjacent unwarped images. i, j ∈ [1, 5]
indicate image indices. To ensure a minimized elapsed time of pro-
cessing, it can be programmed with hardware-acceleration using
GPU. In our experiment, CUDA-based ORB [RRKB11] is used
to calculate matching points for Ii, Ij. Then the global alignment
transformation between image Ii and Ij is measured by calculat-
ing the global alignment transformation H ∈ R

3×3 [HZ04] between
matching points on them. Given the kth pair of matching points
p = [x, y]T ∈ Ii and p′ = [x′, y′]T ∈ Ij, k ∈ [1,N] and N is the
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number of matching point pairs on images Ii and Ij, the corre-
spondence between homogeneous coordinates p and p′ is a pro-
jective homography represented as a planar transformation p̃′ =
Hp̃. Let h = [h1h2 . . . h9]T reform H, where ‖h‖ = 1, its items
can be estimated using DLT [ZCT*14] to solve the following
equation:

ĥ = argmin
h

N∑
k=1

‖akh‖2 (4)

where ak ∈ R
2×9 is defined as the following:

ak =
[−x −y −1 0 0 0 xx′ yx′ x′

0 0 0 −x −y −1 xy′ yy′ y′

]
(5)

H can be obtained by reshaping ĥ to a 3 × 3 matrix. The pixel per
position p∗ in image Ii is aligned to position p′

∗ in image Ij using
p̃′

∗ = Hp̃∗.

By definition, matching points are normally distributed non-
uniformly when the image texture information is insufficient. Since
adjacent fisheye images do not differ purely by rotation, ghost-
ing artefacts are generated if two images are aligned only based
on the globally uniform transformation H. To address this prob-
lem, local image structures are taken into account for the align-
ment. The local alignment transformation H∗ is used to replace the
global H at p∗ and H∗ varies at different image positions. H∗ is cal-
culated locally based on the given H by using DLT to solve the
equation:

ĥ∗ = argmin
h

N∑
k=1

∥∥wk
∗akh

∥∥2
(6)

where ak is defined for the kth pair of matching points (p, p′) in
Equation (5), ĥ∗ is the reshaped form of H∗, the weighted factor wk

∗
is calculated based on the distance from p∗ to a kth matching point
p in the same unwarped fisheye image:

wk
∗ = max

(
exp

(
−‖p∗ − p‖2

σ 2

)
, γ

)
(7)

where σ is a scalar factor and γ ∈ [0.0, 1.0] is used to offset the
weight wk

∗. As indicated by Equation (7), higher weights are as-
signed to local structures closer to p∗. H∗ pays more attention to
the local context than H of the overall image.

3.4. Mesh registration

For image alignment using localized transformation p̃′
∗ = H∗ p̃∗, it

is unnecessary to compute H∗ per image pixel position p∗. A more
efficient way is to guide the alignment using a mesh-based method
[SMW06]. Each of two adjacent unwarped images (Ii, Ij ) to be
stitched is fitted with a mesh grid. Each mesh grid cell contains a
sub-image patch. H∗ is only estimated at mesh grid vertices. Then
it is used to relocate corresponding mesh vertices fitted in Ii and Ij
to align pre-identified matching points. In such a way, Ii and Ij are
aligned along with the deformation of the two meshes fitted to over-
lapping areas of them [CC16].

Given the mesh cell deformation guided by local transformation
H∗ at each cell vertex, pixels of the sub-image patch within the
mesh cell are aligned from source image to target image using bi-
linear interpolation [ZCT*14]. Due to the content complexity of the
source image, the fitting mesh cell may have too much deformation
flexibility for the image alignment. Therefore, mesh-based method
may generate overstretching artefacts and introduce undesired dis-
tortions in the stitching result. To eliminate overstretch and restore
naturalness of image structures, constraints are added to suppress
the mesh deformation uncertainty.

In our approach, after mesh vertices V = [v1v2 . . . vn] on the
source image have been transformed toW = [w1w2 . . . wn] on the
target image using H∗, the total mesh registration energy function
QT (W ) is applied to adjust W for the image alignment. QT (W )
composes of image registration function QR(W ), boundary recti-
fication function Qb(W ) and temporal smoothness function Qs(W ).
QR(W ) offers the trade-off between the alignment accuracy and the
resulting image naturalness. It includes feature alignment function
Qa(W ), local structure preserving function Ql (W ) and global sim-
ilarity function Qg(W ). Qb(W ) is used to prevent image contents
from being discontinuous. Qs(W ) aims to prevent the mesh jittering
effect and maintain the temporal consistency of stitching results for
stitching fisheye frames of a video. QT (W ) and QR(W ) are defined
as the following:

QT (W ) = QR(W ) + βbQb(W ) + βsQs(W )

QR(W ) = βaQa(W ) + βlQl (W ) + βgQg(W )
(8)

where βa, βl , βg, βb and βs are weighting coefficients that reflect
the proportional significance of each constraint to the mesh de-
formation for image stitching. These coefficients need to satisfy
the condition: βa + βl + βg + βb + βs = 1.0. In practice, these con-
straints can affect each other.More details are described in following
sub-sections. In our experiments, a setting of βa = 0.2, βl = 0.2,
βg = 0.1, βb = 0.3 and βs = 0.2 yielded the best result. Qa(W ) is
directly related to the alignment accuracy. Therefore, βa cannot
be set very small. Besides, if Qb(W ) is not given with the highest
weight among the five constraint factors, gaps may appear when the
panoramic scene is reconstructed.

Note that these energy functions are quadratic. Their intentions
are to minimize the distance of each pair of matching points to be
aligned and restrict the variation of a fitting mesh shape before and
after the alignment. The input of Equation (8) are verticesW of the
transformed mesh after pairing identified matching points. QT (W )
should be satisfied with least square solutions for all its constraints
and optimized mesh vertices V̂ can, therefore, be obtained by recur-
sively tuningW . For this purpose, a sparse linear solver [LL19] is
applied:

V̂ = argmin
W

QT (W ) = argmin
W

∥∥KTW − BT
∥∥2

(9)

where K = [ka kl kg kb ks] is the slope. B = [ba bl bg bb bs] is the in-
tercept of the linear correlation and corresponds to all constraints
of QT (W ). After V̂ is calculated, each pixel in the unwarped image
is then transformed using the bilinear interpolation according to its
bounding mesh cell deformation. Energy functions and constraint
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Figure 5: The registration function QR(W ) used in our fitting mesh
alignment: (a) two meshes fitted to images (Ii, Ij ) are aligned us-
ing Qa(W ) to guarantee that every pair of matching points (p, p′)
is aligned accurately in overlapping areas. (b) Ql (W ) restricts the
mesh deformation by maintaining geometric properties of the mesh,
e.g. the inner angle
 and the edge length s. (c) Qg(W ) ensures that
the resulting image centerline is horizontal to the camera.

factors used for our fitting mesh alignment are discussed in follow-
ing paragraphs.

3.4.1. Feature alignment

The feature alignment function ensures that matching points are cor-
rectly aligned according to their correspondences after the mesh de-
formation, as shown in Figure 5a. The constraint energy function
for feature alignment is defined as:

Qa(W ) =
∑
i∈I

∑
j∈N (Ii )

∑
k∈Mi j

∥∥αik · wik − α jk · w jk

∥∥2
(10)

where αik and α jk denote the weighted factor dependent on how a
transformed mesh vertex, e.g. wik or w jk, is located within an orig-
inal fitting mesh cell on the target image Ij or Ii. For more details,
please refer to Lin et al. [LPRA15]. Mij consists of all k matching
vertices between images Ii and Ij. N (Ii) represents all adjacent im-
ages that overlap with the image Ii. By resolving the least square
solution of the multivariable first-order equation (10), the distance
between each of paired matching points is guaranteed to be as short
as possible in the overlapping image areas.

3.4.2. Local structure preserving

The local structure preserving function limits the degree of the
mesh deformation to prevent overstretching artefacts. Let E =
[ei1ei2 . . . ein] denote original fitting mesh edges on image Ii and
F = [ fi1 fi2 . . . fin] denote deformed mesh edges, respectively. n is
the number of mesh edges in each image. The constraint energy
function for local structure preserving is defined as:

Ql (W ) =
∑
i∈I

∑
e∈E, f∈F

∑
k∈Me f

αl (ek )‖ fk − Tek‖2 (11)

where Mef are matched edges in the image Ii. T is the similarity
transformation matrix [II11] that takes all neighbouring mesh ver-

tices around edge ek into account. As shown in Figure 5b, serious
overstretching artefacts can be eliminated in overlapping image ar-
eas with less texture information and non-overlapping areas.

Note that the computation to obtain the circular content area of
the fisheye image inevitably has errors as described in Section 3.1,
particularly for pixels in the image periphery. Although Qa(W ) can
be adopted to accurately align pixels far away from the centre of a
fisheye image,Ql (W ) limits the flexibility of mesh grids. Therefore,
a relatively flexible restriction should be provided to the mesh de-
formation. A novel weighted factor αl (ek ) is defined to control the
local structure preserving factor:

αl (ek ) =
{
D(y)/

(∑
c∈N (ek )

Gc + 1
)
, i f ek ∈ �

D(y), i f ek /∈ �
(12)

where D(y) = √
1 − |H − 2y|/H. H is the height and y is the ek

midpoint ordinate in the unwarped image. Neighbouring cells of
the edge ek can be expressed with a neighbourhood-operator N .
In overlapping areas �, αl (ek ) not only is affected by y, but also
depends on Gc, which denotes the amount of matching points in
N (ek ). If y is a constant, αl (ek ) complies with the fact that the richer
local texture information is, the smaller αl (ek ) is, and vice versa.
In non-overlapping areas, αl (ek ) increases non-linearly while the
|H − 2y| gradually decreases. Equation (11) is resolved to get the
least square solution, which guarantees that the position correspon-
dence between a specific mesh vertex and its neighbouring vertices
should keep their relative positions as consistent as possible after
the mesh deformation for the image alignment.

3.4.3. Global similarity

The global similarity constraint is crucial to prevent source images
to be oblique during stitching and maintain the naturalness of the
stitched panorama, as shown in Figure 5c. Since a fisheye image
presents a non-planar view, the barrel-shaped distortion inevitably
exists. The closer an image object is to the centre of the lens, the
more natural its structure looks, and vice versa. The energy function
constrained for global similarity is defined as:

Qg(W ) =
∑
i∈I

∑
ek∈E

αg(ek )F (T )

F (T ) = ‖Tx − si cos θi‖2 + ∥∥Ty − si sin θi
∥∥2

(13)

where si is the scaling factor and θi is the rotating factor for each
source image. They can be calculated using the bundle adjustment
method [CC16] that solves the unification of parameters for all
lenses. Assuming all lenses of a quad-fisheye camera have identi-
cal structures, si and θi can be pre-calculated and used for stitching
all fisheye images. Tx and Ty are components of T indicated by Equa-
tion (11) on x and y axes.

The weighted factor αg(ek ) is used to smooth the deformable
mesh transformation across overlapping and non-overlapping areas
of unwarped images. A more computationally expensive definition
of αg(ek ) is given in Chen and Chuang [CC16]. In our quad-fisheye
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Figure 6: The proposed quad-fisheye image stitching approach generates rectangular panoramas. (a) Images are aligned using deformable
meshes, then (b) boarders of the stitching result are rectified to be regularly straight, finally (c) occluded areas are replenished to form a
rectangular panorama.

image stitching algorithm, it is simplified to reduce the computa-
tional complexity:

αg(ek ) = δ + d(ek,�)

L
(14)

where d(ek, �) calculates the distance between the edge ek and the
overlapping areas � of images (Ii, Ij). L indicates the width of the
source image. δ is used as a compensation coefficient to control the
global similarity constraint and δ = 5.0 offers the best result in our
experiment. αg(ek ) plays a less important role in overlapping regions
than non-overlapping regions.

3.4.4. Boundary rectification

Irregular boundaries normally present as jagged or tortuous edges
of the stitching result of most existing image stitching methods. The
3D display of the panoramic image may strongly suffer from irreg-
ular boundaries when it is mapped to the 3D spherical surface. To
fix this drawback frequently generated during the deformable mesh
alignment (Figure 6a), a novel boundary rectification approach is
added to our pipeline as a helpful addition. Boundary rectification
function composes of boundary regularity function Qbr(W ), content
continuity function Qbc(W ) and shape constraint function Qbs(W ):

Qb(W ) = Qbr(W ) + Qbc(W ) + Qbs(W ) (15)

Vertices wc
center of deformed meshes at centres of left (c = 1),

right (c = 2), upper (c = 3) and lower (c = 4) borders Bc of the
stitching result are labelled as references, respectively (Figure 6b).
Remaining vertices wc

k of deformed mesh borders are aligned with
reference centres along the corresponding panoramic image border.
The constraint function for boundary regularity is defined as:

Qbr(W ) =
4∑

c=1

∑
wc
k∈Bc

∥∥ϑ
[
wc
k − wc

center

]∥∥2
(16)

where ϑ ∈ R
2×1 is used to constrain horizontal and vertical align-

ments of the mesh border vertex v′c
k. If c = 1 or c = 2, then ϑ =

[1 0]T . Otherwise ϑ = [0 1]T .

Omnidirectional content continuity is interrupted by above men-
tioned energy functions. This is due to the fact that there are no

overlapping regions near the left and right borders of the stitched
panorama. In addition, vertices of deformed meshes are not aligned
vertically. The omnidirectional content continuity is protected by
the following function:

Qbc(W ) =
∑

wc
k∈Bc

∥∥ϑ
[
w2
k − w1

k

]∥∥2

(17)

The stitched rectangular panorama usually has an aspect ratio of
2:1 in our case. If the lower border of the panorama is refined by
cropping, contents at the bottom of the panoramic image may be
cut off. To avoid this, the shape constraint function is defined as:

Qbs(W ) = ∥∥ϑ
[
w2
b − w2

t

] − H
∥∥2 + ∥∥ϑ

[
w2
t − w1

t

] −W
∥∥2 (18)

where wc
b and wc

t are located on the bottom and top mesh bor-
ders, respectively. H andW are the height and width of the stitched
panorama, respectively. Because the pitch angle exists and the bot-
tom area is occluded to camera lenses, contents at the bottom of the
stitched panorama are inevitably missing. This area is replenished
with a default black background as shown in Figure 6c.

3.4.5. Temporal smoothness

We extend our image stitching method to address the problem of
stitching dynamic panoramas. Given a set of input videos (each with
T frames), even if the real scene does not rapidly change, matching
points detected by the feature detector have subtle differences in
each frame. It may cause jittering effects of fitted meshes between
adjacent fisheye image frames of the video. In addition, the insta-
bility of matching points can change the resolution of the resulting
panorama. To solve these problems, the temporal smoothness func-
tion used to the tth frame (t ∈ [2,T ]) is defined as:

Qs(W ) =
∑
i∈I

∑
wk∈Wi

αs
∥∥wt

k − wt−1
k

∥∥2
(19)

The sparse feature point matching may establish incorrect feature
correspondences in textureless regions. Furthermore, the stitched
panorama can have serious distortions. To avoid these problems, a
weighted factor αs = Nt−1/Nt is defined to improve the temporal
smoothness in textureless images. Nt indicates the number of fea-
ture points at the t th frame. Normally, adjacent video frames of
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Figure 7: Comparison results over three consecutive frames ob-
tained with (bottom) and without (top) the temporal smoothness
function Qs(W ). Two right columns represent differences maps be-
tween the current frame and the previous frame.

Figure 8: Our fisheye image blending to eliminate the visual incon-
sistency in the stitching result. (a) Normal blending method does not
consider the interference of dark background colour in unwarped
images marked in the pink box. (b) Our image blending method can
improve naturalness of aligned overlapping areas.

the same scene usually only have subtle differences. As shown in
Figure 7, Qs(W ) greatly helps prevent jittering effects and improve
the visual consistency between adjacent frames of the video stitch-
ing result.

3.5. Image blending

To better stitch images of viewpoints of non-planar scenes, existing
blending schemes can be applied to reduce the inconsistent artefact
caused by the inaccurate pixel alignment [Sze06]. But, due to the ex-
istence of the non-zero pitch angle and the nature of fisheye camera
lens in our case, black pixels in the background of the unwarped im-
age (Figure 4) may destroy the visual consistency in a single stitched
panorama (Figure 8a).

To address this problem, a linear weighted method is used to
blend adjacent unwarped images after mesh registration [HB17]
(Figure 8b). The alpha value of the dark background in unwarped
images is assigned zero so that it does not disturb the blending result.
Strong exposure differences between lenses also need to be handled.
Gain compensation method [BL07] is applied to eliminate colour or

Figure 9: The CUDA-based GPU implementation of our quad-
fisheye image stitching pipeline. Fisheye images are firstly trans-
ferred into the GPU memory. Our pipeline is divided into multiple
subtasks allocated in different streams and threads.

brightness differences between source fisheye images. The compen-
sation factor gi j between images Ii and Ij is defined as:

gi j = Ni j/σ 2
g + Ni jIi jI ji/σ

2
N

Ni j/σ 2
g + Ni jI2

i j/σ
2
N

(20)

where Ni j indicates the pixel amount of the area in image Ii that
overlaps with image Ij. Ii j and I ji represent average intensities of
overlapping areas in image Ii and Ij, respectively. σg and σN are the
gain and the standard deviation of intensity errors, respectively.

4. Real-time 360◦ Panorama Reconstruction

Panorama reconstruction algorithms applied in software programs
offered by camera vendors are strictly dependent on hardware pa-
rameters and are normally non-public. If we want to leverage a ran-
dom quad-fisheye camera for interactive applications [dSJ19], e.g.
real-time rendering and VR viewing, the camera-independent im-
age stitching approach with higher FPS is necessary. With the GPU-
accelerated implementation, the real-time reconstruction of mono-
scopic 360◦ allows to display the captured scene conveniently right
after the start of the recording session.

4.1. GPU-accelerated implementation using CUDA

Our quad-fisheye image stitching approach involves intensive com-
putations. The execution of the entire pipeline is computationally
expensive. A pure CPU implementation can barely satisfy interac-
tive applications in real time. The GPU implementation architecture
of our pipeline is shown in Figure 9.

In our GPU implementation, different graphics memories are
used to support various data structures adapted to fit with the GPU
architecture, including shared memory, global memory and texture
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Figure 10: The stitched panorama is mapped onto the environment
sphere to create a 3D interactive omnidirectional view.

memory. In addition, independent tasks can be performed in multi-
ple GPU streams asynchronously.

First, input quad-fisheye camera images are placed in four sepa-
rate streams to perform fisheye image unwarping (Section 3.1) us-
ing the LUT. After inter-lens parallax optimization (Section 3.2),
parameters of five fitting meshes are calculated per fisheye image in
five new different streams. More specifically, geometric parameters
of meshes, i.e. position and shape, are calculated and prepared for
the subsequent mesh registration. Then, another four streams are
created to identify matching points for four pairs of two adjacent
source images (Section 3.3). This task is the most time-consuming
step in our pipeline. Finally, all image data and fitting meshes are
merged into one stream to perform the mesh registration for stitch-
ing (Section 3.4) and then blend resulting images (Section 3.5). The
mesh registration is the core task, but its computational complexity
is not higher than other tasks. Due to the limited number of mesh
grids, some atomic operations (such as sum operations in all energy
functions indicated by Equation 8) do not need to be accelerated us-
ing the GPU parallel processing. To speed up the sparse linear solu-
tion indicated by Equation (9), the multi-thread mechanism offered
by CUDA can be used to improve the computational efficiency.

4.2. Synchronous panoramic viewing

To produce a 3-DoF 360◦ viewing, the conversion from 2D equirect-
angular image coordinates p(x, y) to 3D unit spherical surface co-
ordinates P(ϕ, θ ) is defined as θ = 2πx/W and ϕ = πy/H, where
W and H are width and height of the stitched panoramic image,
respectively (Figure 10). After the coordinate system transferring,
users can then perform panoramic viewing by adjusting the render-
ing camera direction. In such a way, the integrative visual effect of
the stitched panorama created using our fisheye image stitching al-
gorithm can be demonstrated.

In our experiment, our GPU-accelerated quad-fisheye image
stitching is extended for stitching quad-fisheye videos and applied
for the synchronous scene reconstruction in real time. The input is a
time-sequential series of quad-fisheye images, each of which repre-
sents an instant real-life environment scene. Such image series form
panoramic videos that can be transmitted using HDMI or Wi-Fi in
real time.

To synchronously capture quad-fisheye images from four cam-
era lenses or extract frames from a quad-fisheye video, a par-
allel method based on CPU multi-threading is implemented. In
our pipeline, parameters used in fisheye image unwarping and

mesh registration are invariable for image frames per camera lens.
These parameters are pre-estimated once and applied throughout
the entire video stitching process to avoid redundant computational
costs.

Although the matching point calculation (Section 3.3) and mesh
registration (Section 3.4) are accelerated using GPU, it is hard to
satisfy high computational efficiency especially for high-resolution
images. This tremendously annoys the real-time application that
processes time-sequential image series. For this reason, match-
ing points on a set of four unwarped source images successfully
stitched for one panoramic frame are shared with a few follow-
ing frames. Since relative positions of different camera lenses
are fixed, all frames can theoretically use same mesh registra-
tion parameters. However, sparse matching points cannot provide
comprehensive correspondences of all pixels. The temporal dif-
ference inevitably leads to accumulative errors in the dynamic
scene.

To solve this issue, the movement distance of the camera L and
the average gradient per frame G are calculated to determine the
number of shared frames. In our experiments, ifL > 5 m or G > 10
pixels, mesh registration parameters should be updated, and vice
versa. G is used to evaluate the alignment quality of the stitching
result [PR17]. The motion per lens is synchronized with the cam-
era. To efficiently calculate L, a specific lens of the quad-fisheye
camera C is tracked. First, the intrinsic parameter matrix K of the
lensC should be pre-computed using the camera calibration method
[Zha00]. Then, the feature correspondence between adjacent frames
is built to generate the essential matrixE. Finally, the SfM algorithm
[SZFP16] is leveraged to recover the extrinsic parameter matrix M
and calculate the L.

M = [R | T ] = D(E,K) (21)

where R ∈ R
3×3 and T ∈ R

3×1 indicate the rotation matrix and the
translation matrix respectively. D(·) is the decomposition function
of the essential matrix. The movement distance L is directly related
to T and is equal to the Frobenius norm of T : L = ‖T‖F .

In this way, accumulative errors are bounded by the number of
frames that share the same set of matching points. This not only im-
proves the video stitching robustness, but also speeds up the process-
ing. The stitched panorama per frame can be mapped to a spherical
surface and then visualized in the 3D space. As shown in Figure 11,
compared to the static scene reconstruction using just a single fish-
eye image stitching result, instant video stitching supports the dis-
playing of a dynamic real-life scene.

5. Evaluations

This section documents results of our comprehensive evaluations
for verifying the effectiveness and applicability of the proposed ap-
proach. Fisheye images captured in various real-life environments
were used. The high image alignment quality, robustness, adaptabil-
ity and computational efficiency of our GPU implementation are
demonstrated with a comparison between our approach and exist-
ing state-of-the-art methods.
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Figure 11: Interactive panoramic viewing by stitching quad-fisheye
video frames in real time. Matching points calculated on one set of
quad-fisheye video frames for stitching are shared in a few following
frames.

5.1. Experiments

Current applications show more and more interests on realistic
and interactive panoramic environment view reconstruction and
rendering in real time [LKK*16]. It requires not only the high
quality of fisheye image stitching results, but also fast computing
to provide sufficient interactivity with the high FPS [IR15]. This
section discusses our experiments and verifications conducted to
assess the performance of the proposed method using fisheye im-
ages of real-life scenes. Results of our approach are compared with
some mesh-based methods, i.e. APAP [ZCT*14], SPHP [CSC14],
AANAP [LPRA15], GSP [CC16] and Rich360 [LKK*16], as well
as several non-mesh-based methods, i.e. AutoStitch [BL07] and
OmniMVS [WRL20]. Since these existing methods cannot directly
take the original fisheye images as the input, fisheye images are un-
warped before applying the stitching algorithm as in our pipeline.

Our experiments were performed using a PC with the moderate
computing capability of a NVIDIA GeForce GTX1060 GPU with
3GB DDR3, an Intel quad-core i7-6700 CPU and 16GB system
memory. Proposed algorithms were programmed in C++ and us-
ing CUDA ver. 9.2, with a UI developed using Qt. Various fisheye
images were captured for verifications using the Detu F4 camera,
which is a commercial HD panoramic photo camera. This camera
has four wide-angle fisheye lenses. Each lens can capture 4K video
at 30FPS. To balance the computational efficiency with the image
alignment quality, the resolution of the unwarped fisheye image was
adjusted to 1000 × 1000. The dimension of deformable meshes for
image alignment is set to a 10×10 grid in our experiments.

5.2. Stitching quality assessment

To evaluate the stitching quality of our approach, we compared re-
sults of our algorithm and existing methods, in terms of both visual
inspection and quantitative assessment. In addition, we conducted

a user study to evaluate how our method improves user’s subjec-
tive perception.

5.2.1. Visual inspection of stitching results

A visual comparison between results of our approach and existing
mesh-based methods is shown in Figure 12. Due to the simple ex-
trapolation of the projection transformation to non-overlapping re-
gions, the result of APAP [ZCT*14] shows projection distortions
in the non-overlapping regions (Figure 12a). SPHP [CSC14] pays
more attention to mitigating the perspective distortion but not the
alignment accuracy. The shape structure is preserved but parallax
errors still exist in the result of SPHP (Figure 12b). There are visi-
ble local distortions in the result of AANAP [LPRA15]. Unnatural
rotation artefacts are still difficult to eliminate (Figure 12c). GSP
[CC16] uses the prior global similarity and the local warp model,
which help reduce the shape distortion and provide a higher align-
ment accuracy. However irregular boundaries and ghosting artefacts
are not completely removed (Figure 12d). Note that we reproduced
Rich360 [LKK*16] because its original codes or executable files are
not publicly available. Compared to other methods, Rich360 gener-
ates regular boundaries. Due to the low DoF of mesh grids, top and
bottom regions of the panorama stitched using Rich360 still have
serious artefacts.

We further compared our approach with several non-mesh-based
methods, as shown in Figure 13. To verify whether the proposed
method can be applied to other quad-fisheye cameras, fisheye im-
ages were collected from a public dataset [WRL20]. These test-
ing images were captured using a camera that consists of four 220◦

FOV fisheye lenses. AutoStitch [BL07] uses the global homography
model for the alignment. Structures are stretched in the horizontal
direction and ghosting artefacts are visible (Figure 13a). OmniMVS
[WRL20] leverages a CNN model to learn the global and local con-
text information of fisheye images. But OmniMVS is hard to han-
dle large inter-camera parallaxes and leads to serious artefacts in the
stitched panoramic image (Figure 13b). These drawbacks are better
solved in our method (Figures 12f and 13c). It demonstrates that
our camera-independent method gives the better visual quality with
fewer distortions and artefacts, as well as a better boundary regular-
ity.

To visually evaluate the adaptability and robustness, our approach
was tested on quad-fisheye images of real-life scenes in different cir-
cumstances, e.g. various illuminations, environment contexts, com-
plexities, visual field broadnesses and depths, as shown in Figure 14.
Quad-fisheye images captured in wide open outdoors (Figure 14a),
enclosed indoors of large space (Figure 14b), narrow rooms (Fig-
ure 14c) withmore complex arrangements, and outdoors with darker
illumination (Figure 14d) were adopted in our evaluations. It shows
that our approach is capable to handle all these testing cases and
give desired stitching results.

Figure 15 illustrates the effect of the inter-lens parallax optimiza-
tion (Section 3.2). A classical 3D model, i.e. Lucy, was placed in
front of a quad-fisheye camera. Fisheye images were captured by
adjacent lenses. Since the model was quite close to the camera, dif-
ferent lenses captured images with large parallaxes. Right after the
weighted blending, the stitched image clearly showed transparent
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Figure 12: Visual comparison of stitching results between our algorithm and existing mesh-based approaches. Details of local alignment
quality are highlighted in the lower two images per result.

Figure 13: Visual comparison of stitching results between our algorithm and existing non-mesh-based approaches. Details of local alignment
quality are highlighted in the lower two images per result.

Figure 14: The proposed quad-fisheye image stitching approach was tested in different real-world scenes.
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Figure 15: Comparison results obtained without (left) and with (right) the inter-lens parallax optimization.

artefacts, which can be effectively eliminated using the inter-lens
parallax optimization.

5.2.2. Quantitative evaluation of stitching quality

Three evaluators, i.e. Natural Image Quality Evaluator (NIQE)
[MSB13], Blind/Referenceless Image Spatial QUality Evaluator
(BRISQUE) [MMB12] and Average Gradient (AG) [PR17], were
employed to quantitatively assess the resulting image quality of the
proposed method in our evaluation. NIQE and BRISQUE are blind
image quality assessment models to evaluate the image quality with-
out knowledge of anticipated distortions or subjective opinions of
humans. The smaller NIQE or BRISQUE is the better visual qual-
ity of the stitched panoramic image we get and vice versa. AG can
be used to estimate whether the stitching result is free of ghosting
artefacts. A larger AG reflects a higher image alignment accuracy
and vice versa.

In our quantitative assessment of the result quality, our method
was compared with other existingmethods in Figures 12 and 13. Re-
peated experiments were conducted on fisheye images captured in
eight different environments for 20 times and mean values of statis-
tics of all image pixels are listed as in Table 1. It demonstrates that
the proposed approach outperforms all other existing methods with
all testing scenes.

5.2.3. User study

Due to the significant difference between the visual perception and
the image-based quality (e.g. foveation, ventral metamers, spatio-
temporal retinal sampling, etc.), a formal subjective user study was
conducted to evaluate the stitching quality, in terms of the artefact
existence, robustness and general visual perception. Thirty partici-
pants aging from 20 to 50 years old were invited in this user study.
Besides, participants were engaged in technical or non-technical oc-
cupations, with or without image stitching experiences.

In our comparison, we selected eight real-world scenes and eight
algorithms as outlined in Table 1. First, all resulting images were
randomly ordered for each participant to avoid cueing him or her.
After watching each reconstructed panorama for 30 s, the partici-
pant was then asked to give a score from 1 to 5 (from the worst to
the best). Every participant repeated this experiment three times. In

Figure 16: User study. Participants were invited to evaluate the
stitching quality between our approach and existing methods.

addition, we designed several evaluation criteria, e.g. alignment ac-
curacy, boundary regularity and blending consistency, to control the
individual bias of each participant. All tested algorithms were able
to process selected real-world scenes and all participants evaluated
all resulting images. In such a way, the conclusion of this user study
can be mainly affected by the subjective opinions of these partici-
pants. Original scores made by all participants are given in the sup-
plementary material. Figure 16 shows statistics of the mean value
μ and standard deviation σ of scores given by the 30 participants.
The proposed method obtained the average score of μ = 4.18 and
σ = 0.38 and outperformed other methods. This user study demon-
strates that our method is favoured by most involved participants.

5.3. Evaluation of computational efficiency

The speed of environment scene reconstruction is crucial for inter-
active real-time applications. The computational efficiency of our
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Figure 17: Comparison of elapsed time measures between our
quad-fisheye image stitching approach and other state-of-the-art
image stitching methods.

approach was compared with other publicly available methods. Our
comparisonwas still based on the same computer hardware and soft-
ware configuration as described in Section 5.1. The Detu F4 camera
was used as the only device to capture fisheye images.

Figure 17a illustrates measures of elapsed time for comparing
our method with two non-mesh-based methods, i.e. AutoStitch and
OmniMVS. Figure 17b compares our method with existing mesh-
based methods, i.e. APAP, SPHP, AANAP, GSP and Rich360. Since
AutoStitch uses the global warp model of much lower computa-
tional complexity, our method is slower than AutoStitch when the
algorithm runs on the CPU. To pursue higher accuracy, OmniMVS
consists of a complex network architecture. It inevitably leads to
low computational efficiency. The execution speed of our program
was highly boosted with a GPU implementation. In the comparison

between our method and other existing mesh-based methods, only
GSP, Rich360 and our approach were implemented in C++. The
programs of other methods obtained from their official internet re-
sources were implemented in MATLAB. Instead of comparing the
absolute performance regardless of the implementation platform,
we tried to evaluate impacts on these approaches and their imple-
mentations due to the increase of data scales and fitting mesh com-
plexities. In our experiments, we set different mesh sizes to compare
the speed regression of all methods. The measured elapsed time in-
cluded operations of feature point detection, mesh deformation, tex-
ture mapping and blending. It is demonstrated that stitching speeds
of all methods drop as the fitting mesh size increases and our ap-
proach has less speed regressions than others. If programs run on
CPU, our program is a little faster than GSP and much faster than
implementations of other approaches. If implemented onGPU using
CUDA, our method can be remarkably accelerated by the GPU par-
allel processing power. Our execution performance on GPU is very
stable almost without regression as the mesh complexity increases.

The GPU-accelerated implementation greatly facilitates achiev-
ing real-time panoramic image stitching and the display of 360◦

real-world scenes. We evaluated our stitching algorithm and CUDA
implementation for synchronous panoramic environment recon-
struction by stitching the pre-recorded quad-fisheye video clip, as
described in Section 4.2. We performed a repeated experiment
of 20 times for stitching a fisheye video clip of the resolution
1000×1000 per unwarped fisheye image frame. Our end-to-end sys-
tem, e.g. from capture, reconstruction to display, supports an av-
erage 30.2FPS on a NVIDIA GTX1060 GPU with 3GB of video
RAM. On a NVIDIA GTX1080ti GPU with 8GB of video RAM, it
can achieve an average 39.7FPS.

6. Conclusions and Future Work

In this paper, a novel monoscopic panorama reconstruction pipeline
based on quad-fisheye image stitching is proposed. We developed
a new camera-independent quad-fisheye image stitching approach.
It applies a mesh-based image alignment to stitch quad-fisheye im-
ages. To optimize inter-lens parallaxes, unwarped fisheye images
are cropped and reshuffled before stitching. To better constrain the
mesh deformation for the image alignment and avoid overstretch-
ing artefacts, a new integrative energy function is applied. It has
five constraint factors assigned with weighting coefficients. Com-
pared with existing methods, our approach offers a better stitching
quality for non-planar views. It provides the higher image align-
ment accuracy and the higher robustness for real-life scenes in var-
ious circumstances. In addition, the entire pipeline of our method is
implemented on GPU using CUDA to achieve higher FPS and in-
teractivity. To further improve the computational efficiency of the
video stitching, pre-computed mesh parameters are shared with a
few video frames. Accumulative errors of mesh registration are con-
trolled by taking the camera motion and average gradient per video
frame into account. The panoramic viewing can be visualized syn-
chronously along with the real-life environment using our extended
panorama video stitching method.

There are plenty of promising research avenues in our future work
towards an interactive and complete real-life scene visualization
technique, including the realistic rendering of 3D virtual objects.We
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will expand our panoramic scene reconstruction pipeline and inte-
grate it with more techniques to improve the immersive interaction
between virtual entities and surroundings in reality. In our current
work, the proposed approach can only generate the 3-DoF viewing.
We will leverage the monoscopic panorama to predict the omnidi-
rectional depth and then develop a 6-DoF VR technique [SKC*19].
In addition, our approach will also be integrated into an interactive
VR system for the further experiments and improvements.
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